HEAT FLUX CALIBRATION Updates

2018 October Materials Meeting Atlantic City, NJ USA

Materials Working Group
Michael Burns, FAA Tech Center
October, 2018

AGENDA

- Overview of comparative testing project
- Traditional calibrator / Prototype heat flux calibrator
- Calibration procedures
- Results and observations
- Next

Overview

- Compare calibration results and repeatability using the traditional calibrator a new prototype design.
- Heat transfer methods:
 - Traditional Graphite plate
 - Prototype Halogen bulbs (T3; 500W)
- 8 HFG's: 4 Vatell / 4 Medtherm
- HFG Type: 4 Gardon / 4 Schmidt-Boelter

Heat flux gauges

Heat flux gauges

HEAT FLUX GAUGE	MANUFACTURER	GAUGE TYPE	FULL SCALE RANGE
Transfer Standard Gauge	Vatell	Gardon	0-5 (low)
Working Gauge #1	Vatell	Gardon	0-5 (low)
Working Gauge #2			0-15 (high)
Working Gauge #3		Schmidt-Boelter	0-30 (high)
Working Gauge #4			0-15 (high)
Working Gauge #5	Medtherm	Gardon	0-5 (low)
Working Gauge #6			0-5 (low)
Working Gauge #7		Schmidt-Boelter	0-5 (low)
Working Gauge #8			0-5 (low)

Heat transfer methods

Traditional heat flux calibration apparatus

Prototype heat flux calibration apparatus

Calibration Procedures – Traditional Unit

- The Reference Gage was calibrated by NIST.
- Traditional unit uses a Graphite plate heat transfer method.
- Power is ramped up to maximum output of standard gage.
 - Approximately 45 seconds
- Power is turned off and recorder started.
- Data is recorded for approximately 3 minutes during cool. down (uncontrolled cooling rate)
- Linear fit of data points is used to calculate the calibration factor.

Traditional Heat Flux Calibrator

Calibration Procedures – Prototype Unit

- The same Standard Gage is used.
- Prototype unit uses Halogen bulbs as heat transfer method.
- Recorder is started and power is ramped up to maximum output of standard gage.
 - Approximately 45 seconds
- Power is ramped down at a controlled rate.
- Data is recorded between 4 and 1 W/cm².
 - Approximately 90 seconds
- Linear fit of data points is used to calculate the calibration factor.

Prototype Heat Flux Calibrator Status

- Balance of radiant heat (adjustment of lights) **COMPLETE**
- Pass/Fail criteria change (+/- 3% then average) COMPLETE
- Fix 'blip' in data COMPLETE
- Software punch list issues **COMPLETE**

Prototype Heat Flux Calibrator

Comparative Test Results

Comparative Test Results

NEXT

- Task group discussions as needed
- Continue working hardware/software changes as needed
- Input requested developing HFG RR using the new calibration apparatus

Questions?

